Efficient Representation of Low-Dimensional Manifolds using Deep Networks
نویسندگان
چکیده
We consider the ability of deep neural networks to represent data that lies near a low-dimensional manifold in a high-dimensional space. We show that deep networks can efficiently extract the intrinsic, low-dimensional coordinates of such data. Specifically we show that the first two layers of a deep network can exactly embed points lying on a monotonic chain, a special type of piecewise linear manifold, mapping them to a low-dimensional Euclidean space. Remarkably, the network can do this using an almost optimal number of parameters. We also show that this network projects nearby points onto the manifold and then embeds them with little error. Experiments demonstrate that training with stochastic gradient descent can indeed find efficient representations similar to the one presented in this paper.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملOptimal Approximation with Sparsely Connected Deep Neural Networks
We derive fundamental lower bounds on the connectivity and the memory requirements of deep neural networks guaranteeing uniform approximation rates for arbitrary function classes inL2(Rd). In other words, we establish a connection between the complexity of a function class and the complexity of deep neural networks approximating functions from this class to within a prescribed accuracy. Additio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1602.04723 شماره
صفحات -
تاریخ انتشار 2016